RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Items tagged with "quantum computing"

October 18, 2019

Hybrid Device among First to Meld Quantum and Conventional Computing

Researchers at the University of Maryland (UMD) have trained a small hybrid quantum computer to reproduce the features in a particular set of images.

August 16, 2019

Ions clear another hurdle toward scaled-up quantum computing

Scientists at the Joint Quantum Institute (JQI) have been steadily improving the performance of ion trap systems, a leading platform for future quantum computers. Now, a team of researchers led by JQI Fellows Norbert Linke and Christopher Monroe has performed a key experiment on five ion-based quantum bits, or qubits. They used laser pulses to simultaneously create quantum connections between different pairs of qubits—the first time these kinds of parallel operations have been executed in an ion trap.

March 6, 2019

Ion experiment aces quantum scrambling test

Researchers at the Joint Quantum Institute have implemented an experimental test for quantum scrambling, a chaotic shuffling of the information stored among a collection of quantum particles. Their experiments on a group of seven atomic ions, reported in the March 7 issue of Nature, demonstrate a new way to distinguish between scrambling—which maintains the amount of information in a quantum system but mixes it up—and true information loss.

August 8, 2018

JQI scientists Monroe and Gorshkov are part of a new, $15 million NSF quantum computing project

NSF has announced a $15 million award to a collaboration of seven institutions including the University of Maryland. The goal: Build the world’s first practical quantum computer.

August 2, 2018

Complexity test offers new perspective on small quantum computers

State-of-the-art quantum devices are not yet large enough to be called full-scale computers. The biggest comprise just a few dozen qubits—a meager count compared to the billions of bits in an ordinary computer’s memory. But steady progress means that these machines now routinely string together 10 or 20 qubits and may soon hold sway over 100 or more.

November 29, 2017

Quantum simulators wield control over more than 50 qubits

Two independent teams of scientists, including one from the Joint Quantum Institute, have used more than 50 interacting atomic qubits to mimic magnetic quantum matter, blowing past the complexity of previous demonstrations. The results appear in this week’s issue of Nature.

July 12, 2017

Atomic cousins team up in early quantum networking node

Large-scale quantum computers, which are an active pursuit of many university labs and tech giants, remain years away. But that hasn’t stopped some scientists from thinking ahead, to a time when quantum computers might be linked together in a network or a single quantum computer might be split up across many interconnected nodes.

June 23, 2017

Tiny magnetic tremors unlock exotic superconductivity

Deep within solids, individual electrons zip around on a nanoscale highway paved with atoms. For the most part, these electrons avoid one another, kept in separate lanes by their mutual repulsion. But vibrations in the atomic road can blur their lanes and sometimes allow the tiny particles to pair up. The result is smooth and lossless travel, and it’s one way to create superconductivity.

April 13, 2017

Trapped ions and superconductors face off in quantum benchmark

The race to build larger and larger quantum computers is heating up, with several technologies competing for a role in future devices. Each potential platform has strengths and weaknesses, but little has been done to directly compare the performance of early prototypes. Now, researchers at the JQI have performed a first-of-its-kind benchmark test of two small quantum computers built from different technologies.

January 6, 2016

Beating the heat

Harnessing quantum systems for information processing will require controlling large numbers of basic building blocks called qubits. The qubits must be isolated, and in most cases cooled such that, among other things, errors in qubit operations do not overwhelm the system, rendering it useless. Led by JQI Fellow Christopher Monroe, physicists have recently demonstrated important steps towards implementing a proposed type of gate, which does not rely on super-cooling their ion qubits.