RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Quantum work of an optical lattice

TitleQuantum work of an optical lattice
Publication TypeJournal Article
Year of Publication2019
AuthorsC. Rylands, and N. Andrei
JournalPhys. Rev. B
Date PublishedAUG 26
Type of ArticleArticle

A classic example of a quantum quench concerns the release of an interacting Bose gas from an optical lattice. The local properties of quenches such as this have been extensively studied; however, the global properties of these nonequilibrium quantum systems have received far less attention. Here we study several aspects of global nonequilibrium behavior by calculating the amount of work done by the quench as measured through the work distribution function. Using Bethe ansatz techniques, we determine the Loschmidt amplitude and work distribution function of the Lieb-Liniger gas after it is released from an optical lattice. We find the average work and its universal edge exponents from which we determine the long-time decay of the Loschmidt echo and highlight striking differences caused by the interactions as well as changes in the geometry of the system. We extend our calculation to the attractive regime of the model and show that the system exhibits properties similar to the super-Tonks-Girardeau gas. Finally, we examine the prominent role played by bound states in the work distribution and show that, with low probability, they allow for work to be extracted from the quench.