RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Milliwatt-threshold visible-telecom optical parametric oscillation using silicon nanophotonics

TitleMilliwatt-threshold visible-telecom optical parametric oscillation using silicon nanophotonics
Publication TypeJournal Article
Year of Publication2019
AuthorsX. Lu, G. Moille, A. Singh, Q. Li, D. A. Westly, A. Rao, S-P. Yu, T. C. Briles, S. B. Papp, and K. Srinivasan
Date PublishedDEC 20
Type of ArticleArticle

The on-chip creation of coherent light at visible wavelengths is crucial to field-level deployment of spectroscopy and metrology systems. Although on-chip lasers have been implemented in specific cases, a general solution that is not restricted by limitations of specific gain media has not been reported, to the best of our knowledge. Here, we propose creating visible light from an infrared pump by widely separated optical parametric oscillation (OPO) using silicon nanophotonics. The OPO creates signal and idler light in the 700 nm and 1300 nm bands, respectively, with a 900 nm pump. It operates at a threshold power of (0.9 +/- 0.1) mW, over 50 x smaller than other widely separated microcavity OPO works, which have been reported only in the infrared. This low threshold enables direct pumping without need of an intermediate optical amplifier. We further show how the device design can be modified to generate 780 nm and 1500 nm light with a similar power efficiency. Our nanophotonic OPO shows distinct advantages in power efficiency, operation stability, and device scalability, and is a major advance towards flexible on-chip generation of coherent visible light.