{\rtf1\ansi\deff0\deftab360
{\fonttbl
{\f0\fswiss\fcharset0 Arial}
{\f1\froman\fcharset0 Times New Roman}
{\f2\fswiss\fcharset0 Verdana}
{\f3\froman\fcharset2 Symbol}
}
{\colortbl;
\red0\green0\blue0;
}
{\info
{\author Biblio 7.x}{\operator }{\title Biblio RTF Export}}
\f1\fs24
\paperw11907\paperh16839
\pgncont\pgndec\pgnstarts1\pgnrestart
Landau poles in condensed matter systems, S-K. Jian, E. Barnes, and S. Das Sarma , Phys. Rev. Res., 2 (2020)\par \par Linear-in-T resistivity in dilute metals: A Fermi liquid perspective, E.. H. Hwang, and S. Das Sarma , Phys. Rev. B, 99, 085105 (2019)\par \par Logarithmic entanglement lightcone in many-body localized systems, D-L. Deng, X. Li, J.. H. Pixley, Y-. Le Wu, and S. Das Sarma , PHYSICAL REVIEW B, 95, 024202 (2017)\par \par Loop-structure stability of a double-well-lattice Bose-Einstein condensate, H-Y. Hui, R. Barnett, J. V. Porto, and S. Das Sarma , Phys. Rev. A, 86, 063636 (2012)\par \par Localization in one-dimensional lattices with non-nearest-neighbor hopping: Generalized Anderson and Aubry-Andr\'e9 models, J. Biddle, D. Priour, B. Wang, and S. Das Sarma , Phys. Rev. B, 83, 075105 (2011)\par \par Low-noise conditional operation of singlet-triplet coupled quantum dot qubits, S. Yang, and S. Das Sarma , PHYSICAL REVIEW B, 84 (2011)\par \par Localization in one-dimensional incommensurate lattices beyond the Aubry-Andr\'e9 model, J. Biddle, B. Wang, D. Priour, and S. Das Sarma , Phys. Rev. A, 80 (2009)\par \par Loss of superfluidity by fermions in the boson Hubbard model on an optical lattice, R. M. Lutchyn, S. Tewari, and S. Das Sarma , Phys. Rev. A, 79 (2009)\par \par Limit to two-dimensional mobility in modulation-doped GaAs quantum structures: How to achieve a mobility of 100 million, E.. H. Hwang, and S. Das Sarma , PHYSICAL REVIEW B, 77 (2008)\par \par }