@article {ISI:000474892400001,
title = {Locality and Digital Quantum Simulation of Power-Law Interactions},
journal = {Phys. Rev. X},
volume = {9},
number = {3},
year = {2019},
month = {JUL 10},
pages = {031006},
publisher = {AMER PHYSICAL SOC},
type = {Article},
abstract = {The propagation of information in nonrelativistic quantum systems obeys a speed limit known as a Lieb-Robinson bound. We derive a new Lieb-Robinson bound for systems with interactions that decay with distance r as a power law, 1/r(alpha). The bound implies an effective light cone tighter than all previous bounds. Our approach is based on a technique for approximating the time evolution of a system, which was first introduced as part of a quantum simulation algorithm by Haah et al., FOCS{\textquoteright} 18. To bound the error of the approximation, we use a known Lieb-Robinson bound that is weaker than the bound we establish. This result brings the analysis full circle, suggesting a deep connection between Lieb-Robinson bounds and digital quantum simulation. In addition to the new Lieb-Robinson bound, our analysis also gives an error bound for the Haah et al. quantum simulation algorithm when used to simulate power-law decaying interactions. In particular, we show that the gate count of the algorithm scales with the system size better than existing algorithms when alpha > 3D (where D is the number of dimensions).},
issn = {2160-3308},
doi = {10.1103/PhysRevX.9.031006},
author = {Tran, Minh C. and Guo, Andrew Y. and Su, Yuan and Garrison, James R. and Eldredge, Zachary and Foss-Feig, Michael and Childs, Andrew M. and Gorshkov, Alexey V.}
}