RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Asymmetric Blockade and Multiqubit Gates via Dipole-Dipole Interactions

TitleAsymmetric Blockade and Multiqubit Gates via Dipole-Dipole Interactions
Publication TypeJournal Article
Year of Publication2021
AuthorsJ. T. Young, P. Bienias, R. Belyansky, A. M. Kaufman, and
JournalPhys. Rev. Lett.
Date PublishedSEP 17
Type of ArticleArticle

Because of their strong and tunable interactions, Rydberg atoms can be used to realize fast two-qubit entangling gates. We propose a generalization of a generic two-qubit Rydberg-blockade gate to multiqubit Rydberg-blockade gates that involve both many control qubits and many target qubits simultaneously. This is achieved by using strong microwave fields to dress nearby Rydberg states, leading to asymmetric blockade in which control-target interactions are much stronger than control-control and target-target interactions. The implementation of these multiqubit gates can drastically simplify both quantum algorithms and state preparation. To illustrate this, we show that a 25-atom Greenberger-Horne-Zeilinger state can be created using only three gates with an error of 5.8%.