RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Research News

January 25, 2022 | Research News

Tug-of-War Unlocks Menagerie of Quantum Phases of Matter

Phases are integral to how we define our world. We navigate through the phases of our lives, from child to teenager to adult, chaperoned along the way by our changing traits and behaviors. Nature, too, undergoes phase changes. Lakes can freeze for the winter, thaw in the spring and lose water to evaporation in the dog days of summer. It’s useful to capture and study the differences that accompany these dramatic shifts.

Technical graphic composed of two white dots on a blue-green background. The left dot shows a gradient from black to light yellow. A dotted line forms a semicircle connecting the two black dots on the edge of the white dot. The right white dot is filled with a hexagonal grid. The hexagons git smaller the further they are from the center of the dot. Each vertex of the hexagons is a colored dot with the ones near a larger grey dot being purple and the rest fading to yellow the further away they are.
January 18, 2022 | Research News

Enhancing Simulations of Curved Space with Qubits

One of the mind-bending ideas that physicists and mathematicians have come up with is that space itself—not just objects in space—can be curved. When space curves (as happens dramatically near a black hole), sizes and directions defy normal intuition. Something as straightforward as defining a straight line requires careful consideration.

An artist's depiction of an array of atomic ions controlled by lasers
December 20, 2021 | Research News

In a Smooth Move, Ions Ditch Disorder and Keep Their Memories

A Persian adage, notably wielded by Abe Lincoln and the band OK Go, expresses the ephemeral nature of the world: “This, too, shall pass.”

Two hexagonal grids are twisted relative to each other to create hexagonal snowflake-like repeating patterns against a blue background.
October 18, 2021 | Research News

Graphene’s Magic Act Relies on a Small Twist

Carbon is not the shiniest element, nor the most reactive, nor the rarest. But it is one of the most versatile.

A chip made of golden bow-tie-shaped structure on top of a dark rectangular base that is used to contain ions for experiments and quantum computing tasks. The base of the chip has illegible markings on it.
October 4, 2021 | Research News

Foundational Step Shows Quantum Computers Can Be Better Than the Sum of Their Parts

Pobody’s nerfect—not even the indifferent, calculating bits that are the foundation of computers. But JQI Fellow Christopher Monroe’s group, together with colleagues from Duke University, have made progress toward ensuring we can trust the results of quantum computers even when they are built from pieces that sometimes fail. They have shown in an experiment, for the first time, that an assembly of quantum computing pieces can be better than the worst parts used to make it.

Rendering of a light-guiding lattice of micro-rings that researchers predict will create a highly efficient frequency comb
September 27, 2021 | Research News

Novel Design May Boost Efficiency of On-Chip Frequency Combs

On the cover of the Pink Floyd album Dark Side of the Moon, a prism splits a ray of light into all the colors of the rainbow. This multicolored medley, which owes its emergence to the fact that light travels as a wave, is almost always hiding in plain sight; a prism simply reveals that it was there. For instance, sunlight is a mixture of many different colors of light, each bobbing up and down with their own characteristic frequency. But taken together the colors merge into a uniform yellowish glow.

August 18, 2021 | Research News

Researchers Uncover a ‘Shortcut’ to Thermodynamic Calculations Using Quantum Computers

A collaboration between researchers at JQI and North Carolina State University has developed a new method that uses a quantum computer to measure the thermodynamic properties of a system. The team shared the new approach in a paper published August 18, 2021, in the journal Science Advances.

August 3, 2021 | Research News

New Approach to Information Transfer Reaches Quantum Speed Limit

Even though quantum computers are a young technology and aren’t yet ready for routine practical use, researchers have already been investigating the theoretical constraints that will bound quantum technologies. One of the things researchers have discovered is that there are limits to how quickly quantum information can race across any quantum device.

May 10, 2021 | Research News

JQI Researchers Generate Tunable Twin Particles of Light

Identical twins might seem “indistinguishable,” but in the quantum world the word takes on a new level of meaning. While identical twins share many traits, the universe treats two indistinguishable quantum particles as intrinsically interchangeable. This opens the door for indistinguishable particles to interact in unique ways—such as in quantum interference—that are needed for quantum computers.

A red beam with packets of photons represented as dots passes through a cloud of atoms represented by a cluster of blue spheres.
April 26, 2021 | Research News

Two (Photons) is Company, Three’s a Crowd

Photons—the quantum particles of light—normally don’t have any sense of personal space. A laser crams tons of photons into a tight beam, and they couldn’t care less that they are packed on top of each other. Two beams can even pass through each other without noticing.

Data in the form of a rainbow laid out around a central point next to a whorl of hair on a baby's head.
March 3, 2021 | Research News

Researchers Comb Atoms into a Novel Swirl

When you brush your hair in the morning, there’s a pretty good chance you’re not thinking about quantum physics. But the way your hair swirls as you brush is actually related to some features of the quantum world.