RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

Macroscopic Physics, the Higgs Boson, and Cosmological Evolution of Fundamental Parameters

December 6, 2016 - 4:00pm to 5:00pm
David Kaplan
The Johns Hopkins University

In this talk, I present the Higgs Boson's Compton wavelength (proportional to its inverse mass), as currently one of the few fundamental length-scales in physics, from which much of macroscopic physics is derived. The Standard Model of particle physics predicts a direct relationship between the Higgs mass and the mass of all other fundamental particles, but it fails to predict the mass of the Higgs itself. In fact, the Higgs mass is a conundrum in the Standard Model, as simple (and very reasonable) scaling arguments it should be sixteen orders of magnitude bigger! I will summarize the different approaches to this problem (dubbed the 'hierarchy problem') and show that they all represent a single class of ideas. I will also summarize a second type of idea that relies on anthropic arguments and the existence of a multiverse. Finally, I will present a brand new approach that explains the smallness of the Higgs mass (and thus the largeness of atoms) as a result of cosmological evolution of parameters, and suggest that this fundamental scale in physics may have been a result of something akin to self-organized criticality in the early universe.

PSC Lobby, MD 20742