RSS icon
Twitter icon
Facebook icon
Vimeo icon
YouTube icon

CMOS platform for silicon spin qubits

April 11, 2016 - 11:00am
Silvano De Franceschi
Institut nanosciences et cryogenie

Among solid-state approaches to quantum computing devices, spin-based silicon quantum bits (qubits) are gaining increasing attention, especially after the recent achievement of long spin coherence times in nuclear-spin-free 28Si. At the same time, the enormous engineering know-how and fabrication capabilities of silicon microelectronics industry is foreseen as a clear asset in the challenging task of up-scaling silicon spin qubits toward complex quantum processors, possibly embedding co-integrated classical control electronics. Therefore, the implementation of silicon spin qubits on a foundry-compatible CMOS platform represents a compelling step. I will present our progress in this direction up to the first proof-of-concept spin-qubit device recently realized using 300-mm silicon-on-insulator technology.



  1. E. Dupont-Ferrier, B. Roche, B. Voisin, X. Jehl, R. Wacquez, M. Vinet, M. Sanquer, S. De Franceschi, “Coherent Coupling of Two Dopants in a Silicon Nanowire Probed by Landau-Zener-Stückelberg Interferometry”, Phys. Rev. Lett. 110, 136802 (2013).

  2. B. Voisin, V.-H. Nguyen, J. Renard, X. Jehl, S. Barraud, F. Triozon, M. Vinet, I. Duchemin, Y.-M. Niquet, S. De Franceschi, M. Sanquer, “Few-Electron Edge-State Quantum Dots in a Silicon Nanowire Field-Effect Transistor”, Nano Letters 14, 2094 (2015).

  3. B. Voisin, R. Maurand, S. Barraud, M. Vinet, X. Jehl, M. Sanquer, J. Renard, S. De Franceschi, “Electrical control of g-factors in a few-hole silicon nanowire MOSFET”, Nano Letters16, 88 (2016).

  4. R. Maurand et al. “CMOS-based silicon spin qubit” (unpublished).

CSS 2400
College Park, MD 20742